32 research outputs found

    Decentralized Differentially Private Without-Replacement Stochastic Gradient Descent

    Full text link
    While machine learning has achieved remarkable results in a wide variety of domains, the training of models often requires large datasets that may need to be collected from different individuals. As sensitive information may be contained in the individual's dataset, sharing training data may lead to severe privacy concerns. Therefore, there is a compelling need to develop privacy-aware machine learning methods, for which one effective approach is to leverage the generic framework of differential privacy. Considering that stochastic gradient descent (SGD) is one of the mostly adopted methods for large-scale machine learning problems, two decentralized differentially private SGD algorithms are proposed in this work. Particularly, we focus on SGD without replacement due to its favorable structure for practical implementation. In addition, both privacy and convergence analysis are provided for the proposed algorithms. Finally, extensive experiments are performed to verify the theoretical results and demonstrate the effectiveness of the proposed algorithms

    Resource Constrained Vehicular Edge Federated Learning with Highly Mobile Connected Vehicles

    Full text link
    This paper proposes a vehicular edge federated learning (VEFL) solution, where an edge server leverages highly mobile connected vehicles' (CVs') onboard central processing units (CPUs) and local datasets to train a global model. Convergence analysis reveals that the VEFL training loss depends on the successful receptions of the CVs' trained models over the intermittent vehicle-to-infrastructure (V2I) wireless links. Owing to high mobility, in the full device participation case (FDPC), the edge server aggregates client model parameters based on a weighted combination according to the CVs' dataset sizes and sojourn periods, while it selects a subset of CVs in the partial device participation case (PDPC). We then devise joint VEFL and radio access technology (RAT) parameters optimization problems under delay, energy and cost constraints to maximize the probability of successful reception of the locally trained models. Considering that the optimization problem is NP-hard, we decompose it into a VEFL parameter optimization sub-problem, given the estimated worst-case sojourn period, delay and energy expense, and an online RAT parameter optimization sub-problem. Finally, extensive simulations are conducted to validate the effectiveness of the proposed solutions with a practical 5G new radio (5G-NR) RAT under a realistic microscopic mobility model

    Distributed Learning over Networks with Graph-Attention-Based Personalization

    Full text link
    In conventional distributed learning over a network, multiple agents collaboratively build a common machine learning model. However, due to the underlying non-i.i.d. data distribution among agents, the unified learning model becomes inefficient for each agent to process its locally accessible data. To address this problem, we propose a graph-attention-based personalized training algorithm (GATTA) for distributed deep learning. The GATTA enables each agent to train its local personalized model while exploiting its correlation with neighboring nodes and utilizing their useful information for aggregation. In particular, the personalized model in each agent is composed of a global part and a node-specific part. By treating each agent as one node in a graph and the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited. Namely, instead of aggregation based on averaging, it learns the specific weights for different neighboring nodes without requiring prior knowledge about the graph structure or the neighboring nodes' data distribution. Furthermore, relying on the weight-learning procedure, we develop a communication-efficient GATTA by skipping the transmission of information with small aggregation weights. Additionally, we theoretically analyze the convergence properties of GATTA for non-convex loss functions. Numerical results validate the excellent performances of the proposed algorithms in terms of convergence and communication cost.Comment: Accepted for publication in IEEE TSP; with supplementary details for the derivation

    Mobile MIMO Channel Prediction with ODE-RNN: a Physics-Inspired Adaptive Approach

    Full text link
    Obtaining accurate channel state information (CSI) is crucial and challenging for multiple-input multiple-output (MIMO) wireless communication systems. Conventional channel estimation method cannot guarantee the accuracy of mobile CSI while requires high signaling overhead. Through exploring the intrinsic correlation among a set of historical CSI instances randomly obtained in a certain communication environment, channel prediction can significantly increase CSI accuracy and save signaling overhead. In this paper, we propose a novel channel prediction method based on ordinary differential equation (ODE)-recurrent neural network (RNN) for accurate and flexible mobile MIMO channel prediction. Differing from existing works using sequential network structures for exploring the numerical correlation between observed data, our proposed method tries to represent the implicit physics process of path responses changing by specially designed continuous learning network with ODE structure. Due to the targeted design of learning network, our proposed method fits the mathematics feature of CSI data better and enjoy higher network interpretability. Experimental results show that the proposed learning approach outperforms existing methods, especially for long time interval of the CSI sequence and large channel measurement error.Comment: 7 pages, conferenc

    Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees

    Full text link
    Federated learning (FL) has emerged as a prominent distributed learning paradigm. FL entails some pressing needs for developing novel parameter estimation approaches with theoretical guarantees of convergence, which are also communication efficient, differentially private and Byzantine resilient in the heterogeneous data distribution settings. Quantization-based SGD solvers have been widely adopted in FL and the recently proposed SIGNSGD with majority vote shows a promising direction. However, no existing methods enjoy all the aforementioned properties. In this paper, we propose an intuitively-simple yet theoretically-sound method based on SIGNSGD to bridge the gap. We present Stochastic-Sign SGD which utilizes novel stochastic-sign based gradient compressors enabling the aforementioned properties in a unified framework. We also present an error-feedback variant of the proposed Stochastic-Sign SGD which further improves the learning performance in FL. We test the proposed method with extensive experiments using deep neural networks on the MNIST dataset and the CIFAR-10 dataset. The experimental results corroborate the effectiveness of the proposed method

    Breaking the Communication-Privacy-Accuracy Tradeoff with ff-Differential Privacy

    Full text link
    We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability. The commonly adopted compression schemes introduce information loss into local data while improving communication efficiency, and it remains an open problem whether such discrete-valued mechanisms provide any privacy protection. In this paper, we study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of ff-differential privacy (DP). More specifically, we advance the existing literature by deriving tight ff-DP guarantees for a variety of discrete-valued mechanisms, including the binomial noise and the binomial mechanisms that are proposed for privacy preservation, and the sign-based methods that are proposed for data compression, in closed-form expressions. We further investigate the amplification in privacy by sparsification and propose a ternary stochastic compressor. By leveraging compression for privacy amplification, we improve the existing methods by removing the dependency of accuracy (in terms of mean square error) on communication cost in the popular use case of distributed mean estimation, therefore breaking the three-way tradeoff between privacy, communication, and accuracy. Finally, we discuss the Byzantine resilience of the proposed mechanism and its application in federated learning

    TernaryVote: Differentially Private, Communication Efficient, and Byzantine Resilient Distributed Optimization on Heterogeneous Data

    Full text link
    Distributed training of deep neural networks faces three critical challenges: privacy preservation, communication efficiency, and robustness to fault and adversarial behaviors. Although significant research efforts have been devoted to addressing these challenges independently, their synthesis remains less explored. In this paper, we propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously. We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm. Particularly, in terms of privacy guarantees, compared to the existing sign-based approach StoSign, the proposed method improves the dimension dependence on the gradient size and enjoys privacy amplification by mini-batch sampling while ensuring a comparable convergence rate. We also prove that TernaryVote is robust when less than 50% of workers are blind attackers, which matches that of SIGNSGD with majority vote. Extensive experimental results validate the effectiveness of the proposed algorithm
    corecore